Basic Principles of GMP

GMP for

Sterile Pharmaceutical Products

Part 1

Annex 6. TRS 961, 2011

Objectives

- To review basic GMP requirements in the manufacture of sterile pharmaceutical products
- To review air classifications for activities related to the manufacture of sterile products
- To review the different types of sterilization methods
- To review quality assurance aspects in the manufacture and control of sterile products
- To consider current issues applicable in your country

GMP Requirements for Sterile Products

- Additional rather than replacement
- Specific points relating to minimizing risks of contamination
 - microbiological
 - → particulate matter
 - pyrogens

General Considerations for sterile products

- Production in clean areas
- Enter and exit through airlocks (personnel, equipment, material)
- Air supplied through filters (e.g. HEPA)
- Various operations in separate areas of appropriate grades
- Two categories of operations:
 - terminally sterilized products; and
 - aseptically prepared products

1.1 – 1.3

Premises

Premises

- Appropriate design. Avoid unnecessary entry of supervisory or control personnel. Observe operations from outside Grade A and B areas
- All exposed surfaces smooth, impervious and unbroken and allow repeated application of cleaning agents and disinfectants
- No uncleanable recesses and a minimum of projecting ledges, shelves, cupboards and equipment, also at doors. (No sliding doors. Swing doors open to the high-pressure side and be provided with self-closers
- False ceilings sealed to prevent contamination from above

11.1 - 11.4

 No recesses, unsealed openings and surfaces that are difficult to clean for pipes and ducts and other utilities – sanitary type

Sinks and drains:

- avoided wherever possible
- excluded from Grade A and B areas
- where installed designed, located and maintained
- effective, easily cleanable traps and with air breaks
- open floor channels that are easily cleanable. No ingress of microbial contaminants

Changing rooms

- designed as airlocks
- provide physical separation of the different stages of changing and so minimize microbial and particulate contamination of protective clothing
- flushed effectively with filtered air
- final stage to be the same grade as the area into which it leads
- hand-washing facilities in the first stage
- sufficient size
- equipped with mirrors
- Not more than one grade between areas

11.7

- Airlock doors interlocked with visual and/or audible warning
- Filtered air supply to maintain a positive pressure and an airflow
- Effective flushing of the area
- Pressure differential of approximately 10–15 Pascals between areas
- Protection of the zone of greatest risk
- Decontamination of the facilities and the treatment of air leaving a clean area may be necessary for some operations
- Demonstrate suitable airflow patterns

11.8 - 11.10

- A warning system to indicate failure in the air supply
- Indicators of pressure differentials fitted between areas
- Pressure differentials regularly recorded and failure alarmed
- Restrict unnecessary access to critical filling areas, e.g. Grade A filling zones, by means of a physical barrier

11.11 - 11.12

Sanitation

- Particularly important to clean frequently and thoroughly SOP and programme
- Disinfectants: Rotated; regular monitoring (contamination and effectiveness); storage
- Sterile disinfectants in Grade A and B areas
- Cleaning validation
- Use sporicidal agent also
- Fumigation may be useful

3.1 - 3.4

Area classification and activities in these areas

- Classify clean areas required characteristics of the environment
- Each operation in appropriate level of cleanliness
- Areas classified according to ISO 14644
- Includes determination of the number of sample locations, calculation of sample size and evaluation of classification from the data obtained
- Also used as the basis for monitoring clean areas for airborne particles

Four grades of clean areas:

Grade A	Grade B	Grade C	Grade D
Local zone for high-risk operations	Background environment to Grade A	Less critical steps	Less critical steps
Unidirectional airflow		Product is not directly exposed	Product is not directly exposed
Speed of 0.36– 0.54 m/s			4.3

Lower velocities accepted in closed isolators and glove boxes.

- Number of air changes important to achieve class B, C and D
 - Consider size of the room, equipment and personnel
- Installed filter leakage tests for HEPA filters (ISO 14644-3)
 - every 6 months but not exceeding 12 months
 - aerosol selected should not support microbial growth
 - aerosol composed of a sufficient number or mass of particles
- HEPA filter patching is allowed patch sizes and procedures in accordance with ISO 1822-4

4.4 - 4.5

Clean room and clean-air device classification

- Clean rooms and clean-air devices should be classified in accordance with ISO 14644
- Classification is clearly differentiated from operational process environmental monitoring
- The maximum permitted airborne particle concentration for each grade is given in the next slide

4.6

Maximum permitted airborne particle concentrate: maximum permitted number of particles per m3 greater than or equal to the tabulated size

At rest ^a			In operation ^b	
Grade	0.5 μm	5.0 μm	0.5 μm	5.0 μm
Α	3 520	20	3520	20
В	3 520	29	352 000	2900
С	352 000	2900	3 520 000	29 000
D	3 520 000	29 000	Not defined	Not defined

For classification purposes

Grade	ISO Class	Particle size
A	ISO 4.8	Particles ≥ 5.0 µm
В	ISO 5	Both particle sizes
C	at rest - ISO 7 in operation - ISO 8	
D (at rest)	ISO 8	

Sample 1m3/location

4.6.2

• ISO 14644-1 (2) methodology, based largest particle size

For classification purposes (2)

- Calculate sample volume (ISO 14644-1 (2) clause B.4.2. for Grade C in operation and Grade D at rest - volume per location at least 2 litres and the sample time not less than 1 minute
- Portable particle counters with a short length of sample tubing
- Isokinetic sample heads used in unidirectional airflow systems
- "In operation" classification during normal operations, simulated operations or during media fills as worst-case simulation

4.6.2 - 4.6.4

Clean room and clean-air device monitoring

4.7.1

- Routine monitoring during operation and simulated operations
- Locations based on a formal risk analysis study and the results obtained during the classification
- Grade A particle monitoring (full duration from equipment assembly and during critical processing)
- Frequency and sample size cover all interventions, transient events. System deterioration to be captured and alarms triggered
- Expected higher levels of ≥ 5.0 µm particles at the point of fill when filling is in progress, due to the generation of particles

Clean room and clean-air device monitoring

- Similar system be used for Grade B zones
- Sample frequency may be decreased
- Consider effectiveness of the segregation between the adjacent Grade A and B zones
- Grade B zone should be monitored at a frequency and with a sample size such that changes in levels of contamination and any deterioration of the system would be captured and alarms triggered if alert limits are exceeded

4.7.2

Airborne particle monitoring systems

Airborne particle monitoring systems:

- Independent particle counters;
 - a network of sequentially accessed sampling points connected by manifold to a single particle counter;
 - multiple small particle counters
 - combinations of systems
- Appropriate system for the particle size considered
- Consider length of tubing and the radii of any bends
- Be aware of any risk presented by the materials used in the manufacturing operation (e.g. live organisms or radiopharmaceuticals)

- Sample size in automated systems sampling rate
- Conditions "at rest" in the absence of the operating personnel after a short "clean-up" or "recovery" period of about 15–20 minutes
- The "clean-up" or "recovery" test to demonstrate a change in particle concentration by a factor of 100 (see ISO 14644-3)
- Grade A "in operation" maintained in the zone immediately surrounding the product
- Particle counts needed: "at rest" and "in operation" classification
 AND monitored periodically "in operation" at critical locations
- Locations and sample sizes (monitoring) based on risk

4.7.4 - 4.7.6

- Monitoring in Grade C and D areas in operation based on quality risk management
- Requirements and alert/action limits determines, and "clean-up period" should be attained
- Temperature and relative humidity dependent product and operations
- Examples of operations to be carried out in the various grades are given in the next slide

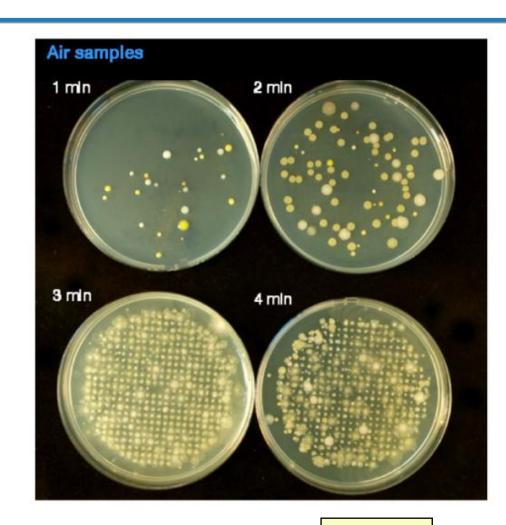
4.7.7 - 4.7.9

Examples of operations to be carried out in the various grades

Grade	Terminally sterilized product	Aseptically prepared product
A	Filling of products when unusually at risk	Aseptic preparation and filling
С	Preparation of solutions when unusually at risk. Filling of products	Preparation of solutions to be filtered
D	Preparation of solutions and components for subsequent filling	Handling of components after washing

- Control and monitor microbiological cleanliness of Grades A – D
- Surfaces and personnel should be monitored after critical operations.
- Frequent in aseptic operations
- Also after validation of systems, cleaning and sanitization.
- Use settle plates, volumetric air and surface sampling (e.g. swabs and contact plates)
- Review results again when reviewing batch documentation for finished product release

4.8



Microbial limits

- Establish levels of detection for microbial contamination
- Alert and action limits
- Monitoring trends in environmental cleanliness
- Limits expressed in colonyforming units (CFU)
- Recommendations in the next slide – these are not intended to be specifications, but are for information only

*4.*9

Recommended limits for microbial contaminational

Grade	Air sample Cfu/m3	Settle plates (diameter 90mm – Cfu/4h b	Contact plates (diameter 55mm Cfu/plate)	Glove print (5 fingers) (CFU/ glove)
Α	< 1	< 1	< 1	< 1
В	10	5	5	5
C	100	50	25	-
D	200	100	50	-

a These are average values.

b Individual settle plates may be exposed for less than 4 hours

- Alert and action limits (for particles and microbiological monitoring)
- In case of trend (alert limits) or exceeding action limits investigation and corrective actions as per SOP
- Validation runs (e.g. aseptic media fills or others types of process simulations) to show processing hold times and a maximum fill duration
- Appropriate process area environment and a time limit based on the microbial contamination (bioburden) found

Terminally sterilized products

Grade	Activity		
A	Filling of products at unusual risk of microbial contamination		
C	Preparation of products at unusual risk of microbial contamination		
C	Filling of products for terminal sterilization		
С	Preparation and filling of ointments, creams, suspensions and emulsions before terminal sterilization		
D	Preparation of components and most products 4.12 – 4.15		

Aseptic preparation

Grade	Activity	
D	Components after washing	
A	handling of sterile starting materials and components	
С	Preparation of solutions to be sterile-filtered	
A	Aseptic manipulation (no filtration)	
A	Handling and filling of aseptically prepared products	
A	Handling of exposed sterile equipment	
A	Transfer of partially closed containers (e.g. freeze-drying Preparation and filling of sterile ointments, creams, suspendictions	•

Summary and important points

- Appropriate design, finishing, maintenance and cleaning of premises important
- Area classification and monitoring
- Particulate matter (non-viable) and viable
- Specified activities in defined classified areas